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The wave propagation of flexural-type deformations, excited by the 

application of short-time loads on infinite or semi-infinite plates and 

beams, has been studied in the literature on the basis of the Kirchhoff 

theory [l-4] and a theory of the Timoshenko type [5-151. The latter’was 

first applied by Ufliand [51, who made use of the attractive integral- 

transform mathematical apparatus. Owing to its hyperbolic character, 

this theory eliminated essential defects [1,51 inherent in the parabolic 

Kirchhoff theory. Inaccuracies which occurred in the first papers when 

integral transform methods were applied were quickly corrected [5,61, 

and approximate methods for inverting the contour integrals that result 

from Timoshenko-type theories were worked out [8-11,14.151. However, the 

problem of the accuracy of a Timoshenko-type theory in wave propagation 

problems remained almost unstudied. 

Below, we apply the three-dimensional theory of elasticity. As a con- 

crete example, we consider the waves excited in a semi-infinite plate 

by suddenly applied boundary stresses linearly distributed over the 

thickness of the plate. By means of a two-fold integral transform method, 

analogous to that applied in [JS. 171 , a formal solution is established 

in the form of an infinite sum of one-dimensional integrals of the 

Laplace transform (Sections l-6). We examine their approximate inversion 

by means of the saddle-point method and present numerical results for 

the first six integrals (Sections ‘7-g). We then study the error in the 
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Kirchhoff theory and in the Timoshenko-type theory (Sections 10-14). In 

carrying out this work. use was made of the experience gained in apply- 

ing the three-dimensional theory to mixed problems [ls-201. 

1. We consider a state of stress that depends on a longitudinal co- 

ordinate xl, a normal coordinate x3 and the time t. 

Let E be the modulus of elasticity, ~1 Poisson’s ratio, 2h the thick- 

ness of the plate, cl and c2 velocities of propagation of dilatational 

and shear (distortional) waves, < and 5 dimensionless coordinates, T a 

dimensionless time, u and w dimensionless (divided by h) displacements 

in the nl and x3 directions respectively, w0 the normal displacement of 

the mean surface 5 = 0, and uij (i, j = 1, 3) stresses multiplied by 

(1 + p)E-‘. Here 

(1.1) 

We define such ,quantities as the bending moment, the transverse 

force, and the integrated displacement by means of the formulas 

&J %5 d5, Q = fora d5 (1.2) 
-1 -1 

U= +[u[dL, IV= $dc (1.3) 
-1 -1 

For differentiation symbols we introduce the abbreviated notations 

(1.4) 

In this notation, the equations of equilibrium in terms of the dis- 

placements have the form 

da% + k-2ii,2u $- (l--“P)-l&d,zc~ = L)T2u 

&%J + k2c3,% -I- (2-2p)-1&8yu = k2&lzCa (1.5) 

On the basis of well-known relations in the theory of elasticity, the 

following equations for the integral quantities (1.2) and (1.3) result 

from (1.5): 

2. To be specific, we take the following conditions 
at hand: 

a) On the plane c = 0 of the semi-infinite plate 

for the problem 
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u,l (0, 5; r) == &A (r), 

b) On the planes 5 = + 1 

013 (0, + 1; z) == (T33 (0, +l; z) zz 0 (2.2) 

c) Zero initial conditions, i.e. A(-r) and all of the unknown quanti- 

ties to be identically zero for T c 0. 

From (2.1) it follows that 

(2.3) 

M (0; t) =.: & A (r), &?I() (0; r) = 0, w (0; r) = 0 (2.4) 

'Ihe first and second of conditions (2.4) may be used as boundary con- 

ditions in an approximate solution based on the Kirchhoff theory [l, 

p.4091, and the first and third in an approximate solution based on a 

Timoshenko-type theory rY,141. 

3. We define the Laplace transform by means of the formulas 

where F denotes an arbitrary quantity under consideration. In particular 

5 ,4 (z) e-“?dr = AL’ (3.2) 

'Ihe Fourier cosine and sine transforms are defined as 

Following [16,171, we multiply the first and second of equations 

(1.5) respectively by the quantities 

(3.5) 
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and integrate from 0 to 0~ over both c and T. Integrating by parts and 
taking (2.1) and (2.3) into account, we have 

a,BuLc + (1__2p)-‘x&wL” _ k-kaULC - guLc = 92 (I _ p)-‘n-‘l’ALc 

a,zwLs- (2-$)-l XagULc - k2XfLU,L8 - $k2WLS = 0 (3.6) 

In the transform space, (3.6) is a system of ordinary differential 

equations. 

Carrying out a similar calculation, which also proceeds from well- 
known relations in the theory of elasticity, we obtain formulas that 
relate transforms of stresses to transforms of displacements. On the 
basis of (2.2), the expressions 

'JKI 
Lc = 1 (j&C 

2’ 
+ xwLBl, B33 

LB - -& r(i -p) a32tLs--pL~] (3.7) 

give boundary conditions for system (3.6). It is not difficult to con- 
struct the solution of system (3.6) in the form of the sum of a particu- 
lar solution of the inhanogeneous equation and the general solution of 
the homogeneous equation. Here one may use ready-made formulas for the 
general solution given (for some more general cases) in L2l.l. Omitting 
intermediate calculations, we give the formulas for the transforms of 
the displacements 

Here 

a2 = A2 - k2$ , p” = A= - 9, h = in 

y = ha _p, 62 = lkpsa+ph2 

(3.8) 

(3.9) 

(3.10) 

uo = 62 
i 

_ ha s.s sin a5 a sin a sin PC 
/3 a +rT-j!T+ ) 

+ @2 (~2 cos b ‘+!!_$ _ pa cos a ‘y) 
(3.11) 

wo = 62 
( 
- pa ‘$J cos a5 + r2 ‘+ cos fit) + 

+ pfla (ra cos b cos a5 - A2 cos a cos fig) 

If s and AL are considered as given quantities, then it is not hard 
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to prove that the functions uLc(A) and w'!"(h) will be single-valued 

functions in the complex plane A. 'Ihe points Q, = 0 are their poles, 

while the points a = 0 and p = 0 are not poles. 

4. 'lhe remaining problem consists in computing the inverse of trans- 

forms (3.8). We first invert the sine and cosine transforms with respect 

to the coordinate 5, and then the Laplace transform with respect to T. 

This sequence of inversions was applied in [X,17,201, and the reverse 

in [18,19I. It has the following advantages: (a) the sine and cosine 

transforms can be inverted by means of the residue theorem and, (b) the 

first inversion can be carried out without concrete specification of 

the function A(T). 

Noting that uLc is an even and Js is an odd function of A, we re- 

write the inversion formulas (3.3) and (3.4) for the displacements in 

the form 

In the calculation of the integrals (4.1) we shall formally consider 

s and AL as given quantities. 

Having in mind the study of the outgoing (damped as < - m) waves, it 

is necessary to consider the poles that have Re s > 0 and are in the 

half-plane Re h\<O. Taking into account the properties of uLc and 4' 

indicated previously, we have, in accordance with the residue theorem 

2 hpL” 
_____- 

%*= (I - p)2s2 me [ I 

X2@ 

?.==hj 

q*= __L- _ 
(1 - p)2s2 1 1 0 hLhj 

(j = 1, 2, 3, . . .) 
* 

(4.3) 

where hi are the roots of the Rayleigh-Lamb [22,231 equation 

@=O (4.4) 

satisfying the condition Re Aj< 0 for Re s > 0. The function 0. is 

taken in the following sense: 

acr, 
LQ*, ah = haaP2 

Q,=Qo--Ql (4.5) 

where by considering (4.4) the functions @a and O1 may be written in the 

form 
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5. On the basis of (4.2), we rewrite the inversion formula (3.1) in 

the form 

To compute F = IO, we use F .* = wj + in (5.1). Other quantities are 
dealt with in a similar way. ‘w e give the expanded formulas for quanti- 

ties that are of special interest in the analysis of the accuracy of 

two-dimensional theories and that lend themselves to calculation at sub- 

sequent points 

We note that on the basis of (4.4)) terms of the form sin p cos a 

are excluded from expression (5.2). This significantly shortened the 

formulas and in the computations reduced the danger of error due to 

small differences of large numbers. 

Hence, we have constructed a formal exact solution in the form of 

the sum of contour integrals. Termwise it satisfies all of the equations 
and relationships in the three-dimensional theory of elasticity, and 

also the initial conditions and conditions (2.2). It satisfies boundary 

conditions (2.1) in terms of sums of the form 
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g q* = 0, 5 all)* = __L 
j=l j=l 1-P (5.3) 

lluls, it follows that 

j=l j=l 
z Mj* = Ap 
jzl 

(5.4) 

It is not possible to invert exactly the contour integrals that have 

been obtained and to sum the infinite series involved. ‘Iherefore we must 

resort to approximate methods of inyersion and must limit the computa- 

tion to a finite number of terms of series (5.1). ‘Ihe solution to the 

inversion problem is further complicated by the fact that data on the 

behavior of the roots A. in the complex plane s are not contained in the 

literature. All of the &sting information [24-261 pertains to the 

,imaginary axis (s = in). 

6. We examine some of the properties of the integrand functions. 

These can be seen without going into numerical data or into a descrip- 

tion of the cuts necessary to guarantee single-valuedness of the roots 

Aj(s) in the s-plane. 

1) For every hj it is possible to determine a positive number bj 

such that on the imaginary axis s = iR 124,251 

hj = inlj where - 00 <S2 < bj, 

hi= -iirnj where + 00 >Q>bj, 

dhi 1 - - 
ds = - 4j (6.1) 

where mj and yj are real positive functions of IQ1 > bj. Plots of the 

group velocity v. for the tn. mode are given in [24-261. Plots of vj(n) 

(j = 1, 2, . . . . 8) are alsojshown in Fig. 1, where Curve 1 is for the 

three-dimensional theory, Curve 2 is for the Timoshenko-type theory and 

Curve 3 is for the Kirchhoff theory. As a basis of enumerating the roots, 

we require that the numbers b should form an increasing sequence. 
I 

For p = 0.3, we have 1241 

2) All of the roots are purely imaginary only on the imaginary axis 

s = i% However, among the hj( j > 3) there are roots that take on 

imaginary values not only on intervals (6. I), but also in a narrow zone 

of the lower frequencies R [24-261. 

In these regions hj may be determined from formulas of the form of 



Application of the three-dinensional theory 1609 

(6.1). with aj negative and yj positive as before.* 

3) For s = iR - f i m we have 

&+--O RS, sj - - s, 4R=+ (i > 2) VW 

where cI., is the propagation velocity of Rayleigh surface waves. 

4) In the neighborhood of the point s = 0 [241, we have the folloa- 
ing expansion for the roots A, and A,: 

(6.3) 

whereas for Aj( j > 3) we have the expansion 

'j = Qi i-2q!2,*t q 

[ 

s2 + 0 (4 

I 

(6.4) 
I j 

where the qj(j = 3, 4, . . . ) are known non-zero roots [271 of the charac- 
teristic equation of static St. Venant boundary effects. 

Some further remarks concerning quantities like (5.2) may be of 
interest. If s + 0, then for j = 1, 2 we have 

1 
U'Oj 

*_wj*+_- 
2hj2 ’ 

Mi* + -i- 
s2 

3_3p 7 Q,*--- 2+3 (6.5) 

whereas for j >,3 these same quantities approach zero. Hence. in summa- 
tions (5.4), the first two terms dominate for small s. With increasing 
s, the relative values of terms j >, 3 increase rapidly. For purposes of 
numerical illustration, some data for the quantities 

Bjl = woj* (is)-‘, Bj2 = Wj* (is)-‘, Bj3 = Mi* (is)-‘, Bi4 = Qi*s-1 (6.6) 

are given in Tables 1 and 2. 

7. We examine the case 

A (K) = A,H (T), AL = &s-l, A, = const (7.1) 

where H(v) is the Heaviside unit function. 

We take CI = 0.3 and for T - m we apply the saddle-point method to 
obtain asymptotic approximations of the contour integrals (5.1) for the 
quantities 

-_ 
l In [24-263, these frequency zones are known as zones of “negative 

group velocity”. In fact, the phase velocity is negative. 
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11’() = FOl, 11’ := Fo2, 111 = FoRI Q = F”, (7.2) 

In this calculation we take the first six terms (j = 1, 2, . . . , fj) in 
summation (5.1). 

We shall use the following notation: 

a... l3.. . 
----- z= (. . .)‘, 

as -gr = (. .)’ (7.3) 

At the saddle points Cj,, (n = 1, 2, 3, . .., Nj) of the jth integrand 

function we have 

s = Srjn, qcj; = 1 -t j hcj; = 0, $ = qJlj (m,j,)-l 0.4) 

We calculate the contribution of the saddle points which are on the 

imaginary axis and which determine nonexponentially decaying waves. At 

these saddle points, appearing in pairs + C. 
jn 

and - C. 
jn’ 

we have, on the 

basis of (6.1) 

s ,,, = -- S_(.j,, = iQcj,,v h+cjn = - ?L_,~, = - imcj, (7.5) 

where R 

Rcjn maiJEe 

and m are real positive quantities. Approximate values of 

founiJ;rom a plot like Fig. 1, from which also follows how 

the number Nj of saddle points depends on +J and j. Further, it is easy 

to find approximate values of mcj, from known plots of modes [24,251’. 

For purposes of comparison (see Sections 10-14). Table 1 lists data 

from the two-dimensional theories. In the Timoshenko-type theory, the 

shear coefficient if kT = 0.860. 

TABLE 1. 

lL == 0.3, s = i!2 

I 
62 

0.0 
0.5 
1.0 
1.5 

;.; 
3:o 
3.5 
4.0 

;:: 

-- 
Three-dimensional 

th 

Hi, 
- 

00 

-1.9288 
-0.4483 
-0.1761 
-0.08400 
-0.04398 
-0.02416 
-0.01355 
-0.007605 
-0.002197 
-0.0004052 

ec - 

- 

w 
Ttmoshenko- Kirchhoff 
type theory theory 

B,I 

-i.S&) -i.z45 -i&S 
-0.4370 -0.4536 -0.4880 
-0.1741 -0.1864 -0.2169 
-0.08540 -0.09557 -0.1220 
-0.04652 -0.05544 -0.07806 
-0.02688 -0.03488 -0.05423 
-0.01602 -0.02328 -0.03982 
-0.909639 -0.01626 -0.03050 
-0.003293 -0.008788 -0.01952 
-0.0097435 -0.005252 -0.01355 
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$ 

0.5 

0.6 

0.7 

0.8 

TABLE 2. 

p=O.3, s=iQ 

0 
/I 

j iooOBjl 1000Bj2 IOWBj, !ooOBj, 

- 
7.0 I + 0.1175 + 0.2232 -14.82 2;. ;;;I --14.72 “2;. ;p 

: +15.82 7.395 
+ 

+3: 010 1707 
+o. 

-28.96 -88.75 +37: 3.851 22 
+ 

8.0 I + 0.2108 +0.6321 - 9.614 -2.791 + y&5 
-43179 -64.02 

-t2$$5 
: +11:23 

$22.13 

j n 

$0.1803 $0.7139 + 0.4372 + 5.956 
-6.595 -2.185 - 6.579 -23.400 
+7.671 -0.04569 --14.42 - 0.5743 
-2.253 $1.648 -78.67 $29.595 

TABLE 3. 

x I Dl I D, 1 D, 

-0.0674 
1.512 
4.021 
5.682 
7.235 
9.676 

-0.0994 
1.481 
3.827 
5.564 
7.003 
9.247 

-25.89 
0.02784 
0.02324 
0.00493 

- 0.00018 
- o.OOOOO 

-15.21 
0.03611 
0.02726 
0.00733 
0.00028 
O.OOOOO 

- 9.338 
0.04455 

- 0.1400 
- 0.1336 

0.03127 
0.01156 
0.00102 
O.OOOOO 

-25.77 
0.04221 
0.00348 

- 0.06001 
0.00001 
o.cOOO5 

-15.09 
0.05590 
0.00439 

- 0.00001 
- 0.00002 

0.00004 

-0.1400 
1.450 
2.244 
2.240 
3.617 
5.453 
6.745 
8.781 

- 9.234 
0.07106 

- 0.00166 
- 0.01060 

0.00541 
o.cmO2 

- o.cQOO5 
- o.oOoO1 

-1.827 
-0.1230 
-0.04936 
-0.00857 

0.00012 
-0.00045 

-1.644 
-0.1681 
-0.06442 
-0.01416 
-0.00024 
-0.00015 

-1.493 
-0.2263 
-0.2658 
-0.1885 
-0.08235 
-0.02760 
-0.00111 

0.00003 

-0.1911 - 5.813 - 5.722 -1.361 
1.339 0.0526 0.0876 -0.2896 
1.955 - 0.0842 0.0082 -0.2427 
1.860 - 0.0679 - 0.0120 -0.0717 
3.393 0.0354 0.0065 -0.1044 
3.948 0.0212 0.0018 -0.0806 
3.696 0.0113 - 0.0008 -0.0106 
5.231 0.0048 0.0021 -0.1193 
5.969 - 0.0086 0.0007 -0.0482 
5.589 - 0.0041 - 0.0002 -0.0038 
6.459 0.0021 - 0.0001 -0.0030 
8.011 0.0051 0.0004 -0.0353 
8.202 0.0000 O.OWO -0.0002 

- 

I - D4 

-0.5071 
0.4597 
0.04567 

-0.00038 
0.00033 
0.00157 

-0.5709 
0.5096 
0.05522 

1z*E4; 
0:00116 

-0.6407 
0.5589 

-0.0105 
-0.0672 

0.06576 
0.00047 

-0.00147 
o.ooo13 

-0.7252 
0.6085 
0.0516 

-0.0822 
0.0778 
0.0223 

-0.0099 
0.0395 
0.0139 
0.0033 

-0.0028 
0.0101 

-0.0006 
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Table 3 contd.: 

i 

0.9 

1.0 

1.1 

1.2 

3 

4 

5 

6 

1 

2 

3 

4 

5 

6 

6 

- 

-. 

- 

..I. i 

-O.2576 - 3.529 - 3.453 -1.2&J 
1.359 0.0591 0.1054 -4-I. 3750 
1.704 - 0.0773 0.0158 -0 _ 2963 
1.163 - 0.0499 - 0.0138 -0.0492 
3.153 0.0401 0.0078 -0.1330 
3.477 O.0228 0.0029 -_(,.I076 
4.872 - o.OOO3 0.0025 -O.1207 
5.294 - 0.0087 0.0012 -O.~~ 
6.144 0.0039 -0.OOO2 -0.0072 
7.139 0.0056 O.OOO6 -0.0528 
7.751 u.oOOo -O.OOOl -0.O016 

-0.3550 
-0.3505 
1.299 
1.478 
2.896 
3.043 
4.473 
4.665 
5.793 
6.321 
7.189 
7.99s 

1.223 
1.278 
2.616 
2.644 
4.0% 
4.077 
5.388 
5.5/19 
6.593 
7.013 

- 2.007 
- 0.6361 

(1.0619 
- 0.0744 

0.0659 
O.0'78 

_ O.~26 
- 0.0093 

0.0074 
0.0067 
0.0001 

- (1.0036 

0.0547 
- 0.0712 

0.0581 
0.0419 

- 0.0058 
- 0.0109 

0.0206 
0.0092 
o.OOO3 

- u.0037 

il. 053 
- 0.00363 

- 1.956 
- 0.6448 

0.1248 
0.0270 
0.0096 
0.0047 
(1.031 
0.0018 

- 0.0003 
0.0009 

-O.OOOl 
o.OOO5 

-1.3O9 
-0.6009 
-O.4925 
-0.3848 
-0.1747 
--0.1489 
-0.1449 
-0.0994 
-0.0185 
-0.O78J 
-O.O056 
-0.0646 

0.1479 
0.0512 
0.0129 
0.0086 
O‘OO4l 
O.OOL31 

- O.OOOl 
0.0014 

-O.O002 
O.~? 

-0.6885 
-0.5605 
-n.asi5 
--u. XC38 
-A.1915 
-D.1635 
-0.O903 
-0.1220 
-0.0162 
-0.0906 

5 951 
6:i32 

-0.OOO16 -O.O457 
O.O008:! -0.1260 

- 

i - 
5 

-____ 
Ii 

- 

I -- 
-0.8521 
0.6609 
0.0979 

-O.1130 
0.0923 
0.0371, 
0.0445 
0.0222 

-0.OO44 
0.0157 

-0.0020 

-3.452 
--1.O69 
0.7210 
O.1652 
0.1121 
0.0584 
0.0547 
0.0338 

--o.OO63 
0.0230 

-O.0036 
O.O165 

0.8087 
0.3037 
0.1513 
0.1058 
0.073O 
u-O576 

-O.OO33 
0.0232 

-0.0051. 
o.O213 

-0.OO47 
0.0261 

8. By the usual methods cZ8.291 one may obtain formulas of the 

following form for the unknown quantities (7.2) 

q+.g 
~j 

2 fjni (.t - cc) (i =I 1, 2, 3, 4) (8.1) 

J..-ln=l 

To simplify the writing of the formulas for the functions fjni, we 
shall drop the indices j and n. 

In the case A" + 0, a known computational scheme [2t3J gives the 

following formul& for the first aR~roximation: 
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ik = D,T, fa = D,T’, D, = B+ci ~m,“~-“r (k = 1, 2, 3; i = 1, 2, 3, 4) (8.2) 

where 

T = +COST~[- sinzx, T* = CO~TX f sinrx, x = Qc - 9m, (8.3) 

Here the upper signs are used for even n (for the case ~c” < 0) and 

the lower signs are used for odd n (for the case mc” >. 0). The functions 

B +ci are evaluated from (6.6) et the saddle points ” +C” on the positive 

semi-axis s = 22. 

For brevity’s sake we shall not introduce the more accurate formulas 

for the saddle-point method 

which were obtained on the 

basis of [283. With the help 

of the approximate formulas 

of [2d, these were used in 

the analysis of the accuracy 

of (8.2) for y - 0. It was 

established that for j > 2, 

formulas (8.2) are in error 

to the order of v-l. Stert- 

ing with (6.3)) one may 

arrive at a similar conclu- 

sion with respect to the 

first mode (j = 1). However, 

in the case of j = 1, the 

standard formulas (8.2) have 

an essential error of an- 

other form that is associ- 

ated with the effect of the 

Fig. 1. 

singular point s = 0. This insufficiency of the saddle-point method may 

be removed by using a procedure for calculating the effect of the 

singularity that was described in [291. A corresponding analysis showed 

that in calculating quantities (7.2), one should take into account cor- 

rections to the components we, W and M. In the calculation of these cor- 

rections for the case v - 0, the contribution of all of the modes is de- 

termined by the formulas for the first approximation to en accuracy of 

7-1, and, hence, they can be practicably applied for comparatively small 

T. Generally speaking, the error of these formulas increases with in- 

creasing w. The case of I Ii’ I << 1 turns out to be particularly 
“dangerous”. 

In the main, formulas (8.2) become unsuitable for mc" = 0. For 
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Im ** 1 << 1 they give acceptable results only for very large T. Hence, 
inCthis Case we apply the well-known method 1291 of reducing the problem 

to the calculation of the Airy function. A detailed analysis of the con- 

tour of integration gives the following computational formulas: 

fk = K, (Y sin?X + X cos TX) (k = 1, 2, 3) (3.4) 

fr = Ka(f X sin zx - Y cos q) 

Ki = (4tq)“’ 1 m,“’ I-1%3+ci (i = 1, 2, 3, 4) (8.5) 

As in formulas (8.3), it is necessary to use the upper signs for even 

n in (8.4), and the lower signs for odd n. For the sake of brevity, we 

shall not introduce the formulas 

for X and Y; these are easily 

obtained by means of [291. We 

remark that for mc" f 0 and T-+ a, 

formulas (8.4) and (8.5) go over 

into (8.2). In the particular 

case of mC*' = 0, two saddle 

points merge and we have the so- 

called Airy phase [14,201. 

9. The computations were 

carried out with the help of the 

M-3 type electronic conputer. An 

abbreviated summary of the re- 

sults of computations according 

to (8.2) is presented in Table 3. 

In Table 3, an asterisk indi- 

cates values of y and j for 

which there exist still other 

saddle points that yield data 

that are not tabulated. At these 

points the wave groups are com- 

mensurate in frequency with 

groups of uncomputed modes j Z 7 

and are of insignificant ampli- 

tude. 

The first mode has an Airy 

phase where R = 1.37449 and 

y = 1.00744, and the second mode 

Fig. 2. 

has two Airy phases, where R = 2.71053, ly = 1.18313, n = 4.69’706 and 

v = 0.690622. etc. Formulas (8.4) were used in the neighborhood of these 
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points (Fig. 1). Likewise, the problem of the transition from formula 
(8.2) to (8.4) was investigated. It was established that for compara- 
tively small T these formulas give essentially different results over a 

rather wide range of frequencies !& but 
TABLE 4. that with increasing -r this range rapidly 

decreases. For a numerical illustration 

/ j=2 ( j=3 1 j=4 

of this fact. in Fig. 2 are compared the 
amplitudes Di in formula (8.2) and XX. 
and YKi in formulas (6.4) in the Airy’ 

t 

0.11 0.09 0.02 
0.16 0.01 -4 phase region for the first mode; i = 1 

6.1 2.7 ho47 
0:os 

refers to the normal displacement wc, 

Q 91 9.0 i = 3 to the moment M and i = 4 to the 
transverse force Q. Curve 1 represents 

( -Di), Curves 2 and 3, respectively, represent ( -XKi) and YKi for 
T = 10, Curves 4 and 5, respectively, represent ( -XKi) and YKi. for 
T = 160. It is seen that the amplitudes already differ insignificantly 
for T = 100 and R < 0.6 and R > 1.9. 

TABLE 5. 

6 j 

0.5 a 

6.6 ; 

0.7 a 

0.8 1 

0.9 d 

I 
- 

Kirchhoff theory 
- 

- 

-- 

D, 

-30.11 1.978 
- - 

-19.08 1.804 
- - 

--12.98 1.670 
- - 

-9.298 1.562 
- - 

-6.926 1.473 
- - 

-~ 

D4 

0.5061 
- 

0.5544 
- 

0.5989 
- 

0.6402 
- 

0.6791 
- 

Timoshenko-type theory 

D* D* 

-25.76 --1 .830 -0.5088 
0.03735 -0.1129 0.4513 

-15.08 -1.648 -0.5741 
0.04921 -0.1528 0.4986 

-9.216 -1.499 -0.6469 
0.06207 -0. i997 0.5439 

- 5.702 -1.372 -0.7381 
0.07574 -0.2549 0.5881 

- 3.424 -1.265 -0.8858 
0.08991 -0.3204 0.6314 

10. Case of y < l/2. In the w,,, W and M portion of the quantities 
the contribution of the first mode dominates; in the Q portion the first 
and second modes dominate. The contribution of the other modes rapidly 
decreases with an increase in the order number j. The maximum amplitudes 
of the modes j = 2, 3 and 4 as compared with the amplitude of the mode 
j = 1 are indicated in Table 4, where all quantities are given as per- 
centages. 

BY substituting expansions (6.3) and (6.5) into (5. l), one may find 
the contribution of the first mode for v - 0. This method yields con- 
tour integrals for the Kirchhoff theory for which inverses are known 
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exactly [ll. For +I < l/2 the maximum error in such an approximation of 

the contribution of the first mode is 12 per cent for we, 11 per cent 

for M and 0.2 per cent for Q. In the w0 and M portion the contribution 
of the first mode prevails, hence these quantities may be determined by 

the Kirchhoff theory with more or less acceptable accuracy. This cannot 

be said with respect to Q. 

The Timoshenko-type theory [5,9,141 approximates the contribution of 

the first and second modes for the quantities W, M and Q. In the first 

mode portion the error in the approximation does not exceed 0.5 per cent. 

The contribution of the second mode is much more poorly approximated, 

but the total error of the approximation of the contribution of the 

first two modes does not exceed 2 per cent. For practical purposes, the 

Timoshenko-type theory for v < l/2 guarantees roughly the same accuracy 

as the first two modes of three-dimensional theory. 

If the contribution of the first mode in the w,,, W and M portion is 

determined by taking into account the correction due to the singular 

point s = 0 (see Section 8), then the formulas for the first approxima- 

tion in the saddle-point method (8. 2) allow one to compute the contour 

integrals to within an error of order -r-l. 

11. Case of l/2 fyi <yR = 0.9274. From the numerical results of 

Table 3 and Fig. 2 it follows that in the w0 and W portion the domina- 

tion of first mode values is retained. In the M portion, the role of the 

modes j > 2 increases rapidly. For example, for y = 0.9 the amplitude of 

mode j = 2 is about 30 per cent of the first mode amplitude; that of 

modes j = 3, 4 about 11 per cent, and of mode j = 5 about 4 per cent. 

With increasing w, the significance of modes j >3 gradually increases 

in the Q portion as well, but much more slowly than in the M portion. 

If four modes are calculated, the maximum amplitudes of the discarded 

modes are about 5 per cent of the first mode amplitudes in the M portion, 

and about 2 per cent in the Q portion. 

One of the characteristic properties in the range being considered 

is the existence of Airy phases in modes j > 2. For \y = w ., correspond- 

ing to an Airy phase of mode j, the oscillations of the mo e decrease Y 

more slowly than for other values of y by a factor of T '16. Hence, for 

very large T values, the Airy phase should become visible. However, in 

an estimate of the relative roles of the modes this fact is not of 

essential significance; the case of v > 1000 is hardly of practical 

interest, if one is to apply the computations for the semi-infinite 

plate model to the engineering design of structural elements that have 

finite length. 

Table 5 gives an estimate of the accuracy of the two-dimensional 
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theories. In the construction of the table, a shear Coefficient of 

kT = 0.860 [5.9,141 was used in the Timoshenko-type theory (following a 

suggestion of Mindlin hoI). 

From a comparison of the data in Tables 3 and 5, it follows that the 

error in the Kirchhoff theory rapidly increases with increasing v. For 

v = 0.9. the difference in the WC portion is already roughly two-fold; 

in the M, Q portion it is likewise very large. This of course could have 

been anticipated from Table 1. 

As a consequence of the dominant role of the first mode, the 5’ 

portion is determined rather well by the Timoshenko theory. In the M, Q 

portion, the approximations become rather coarse for y > 0.7, even 

though the contributions of the saddle points j = 1, n = 1 and j = 2, 

n = 1 are determined with small error. 

This is associated with the essential contribution (for v > 0.7) of 

other saddle points (especially in the M portion) in the j = 2 mode, and 

likewise saddle points in j = 3, 4 modes. 

12. Case of yR < yJ < 1.00744. The upper limit of this range is set 

by the Airy phase of the first mode (maximum value of y,(R)). The rela- 

tive roles of the modes, compared with the Airy phase of the first mode, 

is here essentially dependent on -r. If we limit ourselves to 10 < v < 

1000, then in the UJ,,, W portion the contribution of the first mode is 

5 to 10 times greater than that of the second mode, while in the M, Q 

portion the first and second modes have roughly the same value. The con- 

tribution of the subsequent modes rises significantly. For an accurate 

determination of M and Q it is necessary to compute 4 or 5 modes. 

The Kirchhoff theory is inapplicable. The error in the Timoshenko- 

type theory increases not only because of an increase in the contribu- 

tion of modes j >3, but also because of an essential increase in the 

error of approximation of modes j = 1, 2. Indeed, in this case the con- 

tributions of the saddle points n = 1 and n = 2 of the seond mode are 

almost the same, but the Timoshenko-type theory approximates only the 

contribution of the points n = 1. The contribution of the points n = 2 

of the first mode is completely incorrectly determined for R > 4 (this 

could have been predicted from Table 1). The curve yl(R) deviates from 

the correct curve in the region of its maximum (Airy phase). From what 

has been indicated, the Timoshenko-type theory gives inaccurate results 

for M and Q, while for R it gives more or less acceptable results only 

for 0.95 < q~ f0.98. 

Note. Miklowitz called attention to this phenomenon in [151. He 

suggested that a narrow range of values of q~ around q+, be excluded from 

consideration (in the applications of the Timoshenko-type theory). From 
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the present paper, it follows that this method can have some signifi- 
cance only in the W portion. 

13. Case Of +J > 1.00744. The contribution of the first mode is absent 

if one does not compute the exponentially decaying waves that are 

associated with saddle points off the imaginary axis. The contribution 

of subsequent modes decreases more slowly with increasing 1 than in the 

region of \y considered previously. Up to cut-off in the second mode 

(y ~‘1.18313) it is possible to obtain more or less accurate results by 

taking 5 or 6 modes into account. For larger y values, one must take 

into account an increasing number of higher modes, which makes the 

mathematical apparatus that has been applied ineffective for practical 

use. The larger w is, the more the transverse section of the plate de- 

forms; but the quantities we, W rapidly decrease with increasing v. The 

two-dimensional Kirchhoff and Timoshenko-type theories are inapplicable. 

14. The conclusions presented on applicability were based on results 

obtained by the saddle-point method for T ?> 1. However, starting with 

the data in Tables 1 and 2, and taking (5.4) into account, it is not 

difficult to conclude that at the beginning of the motion the role of 

modes ; > 2 increases and the corresponding accuracy of the Timoshenko- 

type theory decreases more rapidly than it increases. 

On the other hand, it should be noted that in the study of wave motion 

in real struct,ures, the Timoshenko-type theory may give better results 

than in the example considered. In its favor is the fact that the loads 

that act have a smoother variation with time; likewise, damping occurs 

because of energy absorption.This decreases the relative role of high- 

frequency wave groups. 

The author would like to express his thanks to A. Iu. Miannil for pro- 

gramming and carrying out the numerical calculations. 
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